The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB.

نویسندگان

  • María J López Barragán
  • Manuel Carmona
  • María T Zamarro
  • Bärbel Thiele
  • Matthias Boll
  • Georg Fuchs
  • José L García
  • Eduardo Díaz
چکیده

We report here that the bzd genes for anaerobic benzoate degradation in Azoarcus sp. strain CIB are organized as two transcriptional units, i.e., a benzoate-inducible catabolic operon, bzdNOPQMSTUVWXYZA, and a gene, bzdR, encoding a putative transcriptional regulator. The last gene of the catabolic operon, bzdA, has been expressed in Escherichia coli and encodes the benzoate-coenzyme A (CoA) ligase that catalyzes the first step in the benzoate degradation pathway. The BzdA enzyme is able to activate a wider range of aromatic compounds than that reported for other previously characterized benzoate-CoA ligases. The reduction of benzoyl-CoA to a nonaromatic cyclic intermediate is carried out by a benzoyl-CoA reductase (bzdNOPQ gene products) detected in Azoarcus sp. strain CIB extracts. The bzdW, bzdX, and bzdY gene products show significant similarity to the hydratase, dehydrogenase, and ring-cleavage hydrolase that act sequentially on the product of the benzoyl-CoA reductase in the benzoate catabolic pathway of Thauera aromatica. Benzoate-CoA ligase assays and transcriptional analyses based on lacZ-reporter fusions revealed that benzoate degradation in Azoarcus sp. strain CIB is subject to carbon catabolite repression by some organic acids, indicating the existence of a physiological control that connects the expression of the bzd genes to the metabolic status of the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AccR is a master regulator involved in carbon catabolite repression of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB.

Here we characterized the first known transcriptional regulator that accounts for carbon catabolite repression (CCR) control of the anaerobic catabolism of aromatic compounds in bacteria. The AccR response regulator of Azoarcus sp. CIB controls succinate-responsive CCR of the central pathways for the anaerobic catabolism of aromatics by this strain. Phosphorylation of AccR to AccR-P triggers a ...

متن کامل

Engineering a bzd cassette for the anaerobic bioconversion of aromatic compounds

Microorganisms able to degrade aromatic contaminants constitute potential valuable biocatalysts to deal with a significant reusable carbon fraction suitable for eco-efficient valorization processes. Metabolic engineering of anaerobic pathways for degradation and recycling of aromatic compounds is an almost unexplored field. In this work, we present the construction of a functional bzd cassette ...

متن کامل

Correction: Azoarcus sp. CIB, an Anaerobic Biodegrader of Aromatic Compounds Shows an Endophytic Lifestyle

BACKGROUND Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited her...

متن کامل

Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features.

The genomic features of Azoarcus sp. CIB reflect its most distinguishing phenotypes as a diazotroph, facultative anaerobe, capable of degrading either aerobically and/or anaerobically a wide range of aromatic compounds, including some toxic hydrocarbons such as toluene and m-xylene, as well as its endophytic lifestyle. The analyses of its genome have expanded the catabolic potential of strain C...

متن کامل

Transcriptional Regulation of the Peripheral Pathway for the Anaerobic Catabolism of Toluene and m-Xylene in Azoarcus sp. CIB

Alkylbenzenes, such as toluene and m-xylene, are an important class of contaminant hydrocarbons that are widespread and tend to accumulate in subsurface anoxic environments. The peripheral pathway for the anaerobic oxidation of toluene in bacteria consists of an initial activation catalyzed by a benzylsuccinate synthase (encoded by bss genes), and a subsequent modified β-oxidation of benzylsucc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 17  شماره 

صفحات  -

تاریخ انتشار 2004